Posts

10 Real World Examples of Deep Learning Models & AI

For the vast majority of us, concepts like deep learning and Artificial Intelligence are still alien. Most people who come across these terms for the first time react with mixed feelings of skepticism and intimidation. How can we make machines learn and execute jobs meant for humans?  What really explains an entire industry bent upon making machines behave like humans?

While these questions are important and call for discussion, we can easily do away with much of the skepticism. That is, if we are willing to look at some real world applications of deep learning and artificial intelligence. In this article, we show you ten ways in which artificial intelligence and deep learning are turning wheels across industries.   

Where does deep learning come from?

Machine learning and deep learning are both subsets of artificial intelligence. Deep learning is the evolved and advanced phase of machine learning. In machine learning, human programmers create algorithms that learn from the data and derive analyses.

Deep learning is different from machine learning in that it works on an artificial neural network which closely represents a human brain. The same network allows machines to analyze data just the way humans do. Such machines with deep learning capacities do not require to act upon the instructions of human programmers.   

Deep learning is made possible through the ginormous amounts of data that we create and consume daily. Every deep learning model makes extensive use of data to facilitate data processing.

10 Real World Applications of Deep Leaning

Here are ten ways deep learning is already being used in diverse industries.

1. Computer vision

High-end gamers interact with deep learning modules on a very frequent basis. Deep neural networks power bleeding-edge object detection, image classification, image restoration, and image segmentation. So much so, they even power the recognition of hand-written digits on a computer system. To wit, deep learning is riding on an extraordinary neural network to empower machines to replicate the mechanism of the human visual agency.

2. Sentiment based news aggregation

Carolyn Gregorie writes in her Huffington Post piece: “the world isn’t falling apart, but it can sure feel like it.” And we couldn’t agree more. I am not naming names here, but you cannot scroll down any of your social media feed without stumbling across a couple of global disasters – with the exception of Instagram perhaps.

News aggregators are now using deep learning modules to filter out negative news and show you only the positive stuff happening around. This is especially helpful given how blatantly sensationalist a section of our media has been of late.

3. Bots based on deep learning

Take a moment to digest this – Nvidia researchers have developed an AI system that helps robots learn from human demonstrative actions. Housekeeping robots that perform actions based on artificial intelligence inputs from several sources are rather common. Like human brains process actions based on past experiences and sensory inputs, deep-learning infrastructures help robots execute tasks depending on varying AI opinions.

4. Automated translations

Automated translations did exist before the addition of deep learning. But deep learning is helping machines make enhanced translations with the guaranteed accuracy that was missing in the past. Plus, deep learning also helps in translation derived from images – something totally new that could not have been possible using traditional text-based interpretation.

5. Customer experience

Many businesses already make use of machine learning to work on customer experience. Viable examples include online self-service platforms. Plus, many organizations now depend on deep learning to create reliable workflows. Most of us are already familiar with the use of chatbots by organizations. As this application of deep leering matures, we can expect to see further enhancements in this field.

6. Autonomous vehicles

The next time you are lucky enough to witness an autonomous vehicle driving down, understand that there are several AI models working simultaneously. While some models pin-point pedestrians, others are adept at identifying street signs. A single car can be informed by millions of AI models while driving down the road. Many have considered AI-powered car drives safer than human riding.

7. Coloring illustrations

At one point, adding colors to black and white videos used to be one of the most time-consuming jobs in media production. But thanks to deep learning models and artificial intelligence, adding color to b/w photos and videos is now easier than ever. As you read, hundreds of black and white illustrations are being recreated in colored form.

8. Image analysis and caption generation

One of the greatest feats of deep learning is the ability to identify images and generate intelligent captions for them. In fact, image caption generation powered by AI is so accurate that many online publications are already making use of such techniques to save time and cost.

9. Text generation

Machines now have the power to generate new text from the scratch. They can learn the punctuation, grammar, and style of a piece of text and pen down effective news pieces. Robo-journalists riding on deep learning models have been producing accurate match reports for at least three years now. And the skill isn’t limited to match report writing exclusively.

AI-based text generation is fully equipped to handle the complexity of opinion pieces on issues concerning you and myself. As of now, text generation has helped create entries on just about everything from children’s rhymes to scholarly topics.

10. Language identification

At this point, we are looking at a preliminary stage where deep learning machines can differentiate between different dialects. For example, a machine will make the decision that someone is speaking in English. It will then make a distinction based on the dialect. Once the dialect has been established, further processing will be handled by another AI that specializes in the particular language. Not to mention, there is no human intervention in any of these steps.

These were just a few applications of deep learning that exist already. The further growth of deep learning models will bring to us many more uses of artificial intelligence around us. At Futran Solutions, we work with top-of-the-line AI resources that make the above industry applications of AI come to life. Contact us today to find out more about our RPA, AI, and deep learning solutions.

Jyoti Vazirani is the co-founder and CEO of Futran Solutions. She is a certified SAFe Agile coach and an out and out deep learning enthusiast.

What Does Corporate Accountability Stand for When Bots Do All the Work?

What Does Corporate Accountability Stand for When Bots Do All the Work?

Only one event commands the same absolute degree of certainty as death – disruption of the status quo. Unless you concede that transformation is the new status quo. In every industry.

We now live in an era where the promise of unprecedented growth is almost unchallenged. It takes no second guessing to formulate that such growth cannot be realized without an increasingly digitized workforce headed by business leaders that are not afraid to weave AI, RPA, and cognitive machine learning technologies into existing processes.

But like Jyoti Vazirani had stated in a previous article, the more we lean toward automation and machine learning and integrate them to our core business processes, the faster we realize that there’s an expansive human workforce calling for imminent, preferably immediate consideration. What happens to the corporate accountability of our human resources? More importantly, what happens to our human resources?

For the start, let’s not bluff ourselves with arguments that make rats and bats crack up. Intelligent, emotionless bots are far more ruthless when it comes to beating known standards of efficiency and productivity. It’s time the high and mighty leaders in business work to create the right synergy between humans and bots.

The audacity of bots

What has for long been an expectation and a speculation is now looking at us in the face as a guarantee of sorts. Bots will outperform humans, they’ll champion cognitive functions, and in the very near future even develop the capacity for thought, albeit with a debatable degree of independence. That explains why even as business leaders are running hay and hill behind robotic process automation, the workforce at large is unwelcoming of the change.

The madness of reaping early-bird profits from automated processes is so extremely insane that almost no business leader is ready to acknowledge the unavoidable employment crisis, let alone starting a meaningful dialog on it.

Crisis #1: Saving the value-based ecosystem

In the last two decades, organizations have successfully embedded a sense of value in their core missions and brand philosophies. Fortunately, the largest part of this change was brought about by the technology companies. If your mind is already reading out names of tech giants, you see my point.

Ironically, the first and perhaps the biggest industry that will be faced with the workforce imbalance ushered by bots is the technology industry – because of obvious reasons. How, when, and if at all the industry stands up to the challenge is shrouded under expansive dubiety.

If the technology industry – the very one that created the bots in the first place – does not act swiftly to save the value-based corporate ecosystem, it will become doubly difficult for other industries to follow suit.

Crisis #2: Maximizing convenience and minimizing pain

That’s just what bots will do. For their corporate masters. Will the effect be the same for lower-rung employees? Hardly. Here are some more questions that must be answered:

  • Will we create new jobs for displaced employees – jobs that we didn’t know existed?
  • Are we sure that bots guarantee a better and more sustainable corporate future?
  • Is there a long-term reskilling program that gives employees the flexibility to try out newer careers?
  • Does the combined human-bot workforce turn out to be as effective as it looks on paper?
  • Do business leaders even care?

There’s no definitive answer to any of these questions. But we must remind ourselves that history will remember us not for creating bots, but for what we did to humans after bots were created.

Crisis #3: Weighing down by Peter Principle

The Peter Principle is a benchmark corporate ideal laid out by Canadian educator Dr. Laurence J. Peter. It states that in organizational hierarchies, employees rise up the ranks through promotion until they are promoted to a position for which they are incompetent. In effect, it highlights the logical assumption that save a few exceptions, one individual cannot have mastery over many diverse fields within a corporation.

The principle also states that every position in the hierarchy of an organization will at some point be filled by people who are incompetent to fulfill their job roles in those respective positions. Dr. Peter also stressed upon the fact that such outcomes might not be related to the general incompetence of employees. It’s largely because new positions might require additional skill-sets which cannot always be imparted through training.

The Peter Principle has been as true lately as it was in 1968 when the term was coined. But there were no automated bots in 1968. So the principle applies exclusively to human competence, and to wit, to human employees.

Here’s how the principle unfolds with the bot-human amalgamated workforce:

  1. It will still apply to humans only because bots are not likely to receive promotions
  2. A large part of the human workforce will be saved from the Principle because they will no longer exist as a part of the workforce
  3. Of the humans that will still be a part of the workforce, very few will be engaged in the lower rungs of the hierarchy; the long chain of systematic promotion to the top will break and the Peter Principle will lose much of its premise
  4. Since there will be very few human employees, most of them will comprise of the top management of the organization. We can safely assume they will come with enough training required for their positions

If you’re reading this right, the Peter Principle might cease to even exist if the human-bot work grid is laid out at large. A solid, 50-year old tried and tested corporate theory based solely on logical deduction, human psychology, and organizational observation might die a sudden death without people even noticing. If this doesn’t send the alarm bells ringing in wild abandon, no corporate activist screaming off rooftops ever will.

Back to the drawing board

Let’s resume thought with the truth.

The sun is setting on thousands of employees. Nothing in the corporate universe is as lucrative as the prospect of making big money in small time. Most corporations impart skill-training to employees not really to help them grow their skill set. But to extract greater competency from the same resource. If they can replace skill training with an additional program on an automated bot and save both time and money, make no mistake – they will.

You could argue that the Top 100 companies might actually retrain staff for new jobs. I say yes, they very well may. But the best of the organizations have laid off staff by the hundreds for much smaller reasons. Plus, retraining might not automatically amount to retaining. More like “we teach you fishing and there’s a lake at 6 o clock.”

Like Jyoti had written earlier, the human workforce cannot be saved without government intervention. Might sound grim, but it’s just as necessary. Tech and other industry giants will plant so many trees that no one will ever talk about the human workforce they uprooted. They’ll make so many of those feel-good inspirational videos that no reporter will cover the plight of the jobless that were once employed with them. But are the governments even listening? They won’t unless people who care about jobs speak up. For very soon, jobs will make way for tasks in the most cruelly literal way.

Futran Solutions supports robotic process automation. We are a pro-technology company. And we believe that if a technology deserves to go viral, we must do our part in making it viral. We provide a range of RPA and AI solutions to industries across the board. Adjacently, we run a series of training programs to aid the displaced workforce.

Drop us a line to know how we can help you with RPA consulting and project implementation.  
Krishna Vemuri is the co-founder of Futran Solutions and the CEO of the up and coming tech startup Onata. He writes on technology industry dynamics and the rather eclectic tantrums of his husky, Loki.